The underlying mechanisms for self-healing of poly(disulfide)s.

نویسندگان

  • Sil Nevejans
  • Nicholas Ballard
  • José I Miranda
  • Bernd Reck
  • José M Asua
چکیده

Recently, self-healing polymers based on disulfide compounds have gained attention due to the versatile chemistry of disulfide bonds and easy implementation into polymeric materials. However, the underlying mechanisms of disulfide exchange which induce the self-healing effect in poly(disulfide)s remain unclear. In this work, we elucidate the process of disulfide exchange using a variety of spectroscopic techniques. Comparing a model exchange reaction of 4-aminophenyl disulfide and diphenyl disulfide with modified reactions in the presence of additional radical traps or radical sources confirmed that the exchange reaction between disulfide compounds occurred via a radical-mediated mechanism. Furthermore, when investigating the effect of catalysts on the model exchange reaction, it could be concluded that catalysts enhance the disulfide exchange reaction through the formation of S-based anions in addition to the radical-mediated mechanism.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modeling of Self-Healing Concrete: A Review

Self-healing concrete (SHC) has received a tremendous attention due to its advanced ability of automatic crack detection and crack repairing compared to the standard concrete. Two main approaches which considered as to-date self-healing mechanisms are autogenous and autonomous healing. In the past several years, the effort of the research has been focused on experimental works instead of numeri...

متن کامل

Preparation of antibacterial electrospun Poly lactic-co–glycolic acid nanofibers containing Hypericum Perforatum with bedsore healing property and evaluation of its drug release performance

Skin drug delivery systems with controlled release are suitable means for the local transfer of pharmaceutical compounds to the damaged and healthy layers of skin. Nanofibrous membrane prepares uniform moisture in the wound environment with less accumulation of fluid secretion due to its variable pore size. Electrospinning takes advantage of using herbal extracts in the form of electrospun nano...

متن کامل

Preparation of antibacterial electrospun Poly lactic-co–glycolic acid nanofibers containing Hypericum Perforatum with bedsore healing property and evaluation of its drug release performance

Skin drug delivery systems with controlled release are suitable means for the local transfer of pharmaceutical compounds to the damaged and healthy layers of skin. Nanofibrous membrane prepares uniform moisture in the wound environment with less accumulation of fluid secretion due to its variable pore size. Electrospinning takes advantage of using herbal extracts in the form of electrospun nano...

متن کامل

Development of Single Walled Carbon Nanotube-Molybdenum Disulfide Nanocomposite/poly-ethylene Glycol Modified Carbon Paste Electrode as an Electrochemical Sensor for the Investigation of Sulfadiazine in Biological Samples

A rapid electrochemical analysis of sulfadiazine (SFZ) has been carried out by cyclic voltammetry (CV) and differential pulse voltammetry (DPV) methods by employing a sensitive single walled carbon nanotube-molybdenum disulfide nanocomposite/poly ethylene glycol modified carbon paste electrode (SWCNT-MoS2/PEG/CPE). The SFZ shows anodic peak potential at 0.94 V (vs. Ag/AgCl) in 0.1 M PBS of pH 7...

متن کامل

A Wound Healing Formulation Based on Iranian Traditional Medicine and Its HPTLC Fingerprint

The present study reports formulation of a traditionally used poly herbal product for wound healing and its chromatographic analysis by HPTLC. Herbal therapy was the common treatment prescribed by Iranian physicians for wound healing. “Zemad”, the most ancient pharmaceutical dosage form used in the Iranian Traditional Medicine (ITM) for skin diseases. In this study, a poly herbal paste (PHP) wi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 18 39  شماره 

صفحات  -

تاریخ انتشار 2016